Preliminary communication

ÜBERGANGSMETALL-METHYLEN-KOMPLEXE

XXXVIII*. ADDITION KLEINER MOLEKÜLE AN METALL-METALL-DOPPELBINDUNGEN

WOLFGANG A. HERRMANN*, CHRISTINE BAUER und JOSEF WEICHMANN

Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt am Main 50 (Deutschland)

(Eingegangen den 18. Oktober 1982)

Summary

Clean addition of chlorogold, sulfur, selenium, tellurium, and acetylene to the metal—metal double bonds of the dinuclear cobalt and rhodium precursors $[(\eta^{5}-C_{5}Me_{5})M(\mu-CO)]_{2}$ (M = Co, Rh) occurring under very mild conditions exemplifies a simple and general route to a broad variety of new organometallic compounds.

Mit zahlreichen Beispielen haben wir die hohe Bereitschaft von Metall-Metall-Mehrfachbindungen zur Addition von Alkyliden-Liganden unterschiedlichster Konstitution belegen können [1-3]. Diesbezüglich besonders gut untersucht bieten sich die MM-Doppelbindungen der Rhodium und Cobalt-Verbindungen $[(\eta^5 \cdot C_5 Me_5)M(\mu - CO)]_2$ (M = Rh, 1a; M = Co, 1b) als reaktive Strukturelemente auch für die Anlagerung analoger Liganden unter primärer Ausbildung häufig beständiger Dreiringstrukturen an. Nachdem dieses Synthesekonzept bereits früher zum Aufbau der verbrückten Carbonyl- und Schwefeldioxid-Komplexe 2 bzw. 4 genutzt worden war [4], berichten wir jetzt über weitere Additionsreaktionen, denen schonende Reaktionsführung, quantitative Ausbeuten sowie breite Anwendbarkeit gemeinsam sind.

So reagiert der Rhodium-Komplex 1a bereits bei -40°C schlagartig, wenn seine THF-Lösung mit Carbonyl(chloro)gold versetzt wird; Zusammensetzung und Konstitution der Clusterverbindung 3 sind wie bei allen anderen hier vorgestellten Additionsprodukten durch Elementaranalysen, Infrarot-, ¹H- und ¹³C-NMR-Spektroskopie sowie massenspektroskopisch (FD-Spektren) gesichert (Tab. 1);

^{*}XXXVII. Mitteilung vgl. Ref. 1.

TABELLE 1

CHARAKTERISIERUNG EINIGER AUSGEWÄHLTER VERBINDUNGEN a

Verb.	Eigenschaften Summenformel (Molmasse) Elementaranalyse, Gef. (Ber.) Infrarot-Daten (ν (CO) cm ⁻¹)	¹ H-NMR (270 MHz, δ -Werte in ppm bzgl. int. TMS; J in Hz)	¹³ C-NMR (δ -Werte in ppm bzgl. int. TMS; J in Hz; breitbandentkoppelte Spektren; Proben ¹³ CO- angereichert)
3 ^b	Dunkeirotes Pulver, Zers. 170° C $C_{22}H_{30}$ AuClO ₂ Rh ₂ (764.69) C, 33.65 (34.35); H, 3.78 (3.95); Au, 25.60 (25.76); Cl, 5.56 (5.65); Rh, 26.81 (26.91) Molmasse 764 (FD-MS) IR: 1768 sst, 1822 ss (KBr); 1769 sst (CH ₂ Cl ₂)	CDCl ₃ , 0°C: 1.48 {s, CH ₃ }	CDCl ₃ , -40° C: 9.17 [s, CH ₃], 105.69 ["s", C_{g} Me ₅], 238.96 [t, CO; ¹ J(Rh,C) 44]
6	Schwarze Kristalle; kein Fp. bis 280° C C ₂₂ H ₃₀ O ₂ Rh ₂ Se (611.25) C, 43.28 (43.23); H, 4.81 (4.95); Rh, 33.50 (33.67); Se, 13.12 (12.92) Molmasse 610 (FD-MS) IR: 1950 sst (KBr); 1960 sst (CH ₂ Cl ₂)	CDCl ₃ , 25°C: 1.91 [s, CH ₃]	CDCl ₃ , -60° C: 9.80 [s, CH ₃], 96.05 [s, C ₅ Me ₅], 185.43 [t, CO; ¹ J(Rh,C) 40]
8	Rotbraune, metallisch glänzende Nadeln, Zers. 142°C C ₂₄ H ₃₂ O ₂ Rh ₂ (558.30) C, 51.51 (51.63); H, 5.77 (5.77); Rh, 37.45 (36.86) Molmasse 558 (FD-MS); 535 (osmometr., CHCl ₃) IR: 1963 sst (1918, ¹³ CO), 1804 st (1763, ¹³ CO), 1746 st (1690, ¹³ CO), 1720 sst (1668, ¹³ CO) (THF, 25°C)	CD_2Cl_2 , -100° C: 1.83, 1.93 [s, CH ₃], 4.71, 8.52 [d, CH; $J = 3$] (Isomer A); 1.80; 1.90 [s, CH ₃], 8.18 [d, CH, $J = 7$). 3.8 [m,br, CH] (Isomer B)	CDCl ₃ , -60° C (Isomerengemisch A/B) ^c : 231.31 [dd, μ -CO; ¹ J(Rh,C) 41], 219.8 [dd, Acyl-CO; ¹ J(Rh,C) 26; ¹ J(C,C) 40], 194.3 [m, Acyl-CO], 192.91 [dd, RhCO; ¹ J(Rh,C) 85], 151.97 [m, CH], 146.44 [m, CH], 78.33 [m, CH], 50.41 [m, CH], 100.02 [C ₅ Me ₅], 98.37 [C ₅ Me ₅] 10.45, 10.10, 9.61 [CH ₃]

_

.

9	Grünsch warze metallglänzende Rauten, Zers. 108°C C ₂₄ H ₃₂ O ₄ Rh ₂ S (622.36) C, 46.15 (46.32); H, 4.91 (5.18); Rh, 32.87 (33.07); S, 4.93 (5.15) IR: 1855 sst, 1681 sst (CH ₂ Cl ₂) 1840 sst, 1814 m(Sch) (1799, ¹³ CO), 1677 sst (1638, ¹³ CO)	$CD_{2}Cl_{2}$, 25%C: 1.79, 1.74, 1.63 [s, CH ₃] (Isomere I+II); 9.70 [ddd, CH, ³ J(H,H) 4.8, ² J(Rh,H) 2.3, ³ J(Rh',H) 0.8], 3.46 [dd, CH; ³ J(H,H) 4.8, ² J(Rh,H) 2.3] (Isomer I, 80%); 9.38 [ddd, CH; J s.o.], 3.18 [dd, CH; J s.o.] (Isomer II, 20%)	<i>a</i>
10	Dunkelrote Nadeln, ca. 115°C Zers. C ₃₀ H ₃₆ O ₂ Rh ₂ (634.39) C, 56.55 (56.80); H, 5.64 (5.71); Rh, 32.55 (32.44) Molmasse 634 (EI-MS) IR: 1788 sst, 1703 sst (KBr); 1799 sst, 1707 st (THF); 1792 sst, 1686 sst (CH ₂ Cl ₂)	$CDCl_3$, 25°C: 1.54, 1.46 [s, CH_3], 4.46 [dd, CH ; ² J (Rh,H), ³ J (Rh',H) 2.7 bzw. 2.3], 7.1–7.3 [m, C_6H_5]	$CDCl_3$, 25°C: 8.87, 9.14 [s, CH_3], 100.87 [2xd, C_5Me_5], 229.49 [dd, μ -CO; ² J(Rh,C) 44.7], 195.39 [d, Acyl-CO; ² J(Rh,C) 20.5], 144.78, 128.66, 128.03, 127.03 [s, C_6H_5], 69.97 [dd, CH -CO; ² J(Rh,C) 11], 155.92 [dd, C - C_6H_5 ; ² J(Rh,C), ³ J(Rh',C) 23.4 bzw. 23.1] (Zuordnung durch off- resonance-Entkopplung)

^a Schmelz- und Zersetzungspunkte in geschlossenen Kapillaren. Die Verbindungen sind im kristallinen Zustand zumindest kurzzeitig an Luft handhabbar. Eine vollständige Beschreibung der NMR-Spektren und des fluktuierenden Verhaltens der Verbindung 8 erfolgt an anderer Stelle. Herrn Dr. Zimmermann sei für die Aufnahme der Kernresonanzspektren herzlich gedankt. Verbindung 11: Braunrotes Pulver; $\nu(CO)$: 1786 sst, 1692 sst (KBr); 1789 sst, 1698 sst cm⁻¹ (THF, -10°C); wegen Acetylen-Eliminierung bei Raumtemperatur nicht haltbar. Verbindung 7: $\nu(CO)$ 1954 sst cm⁻¹ (THF). ^b Zersetzt sich in Lösung bei Raumtemperatur rasch unter Abscheidung eines Goldspiegels und teilweiser Rückbildung von 1a. ^c Zuordnung durch Anreicherung mit ¹³CO und [¹³C]₂-Acetylen.

auch in Lösung liegt ausschliesslich die carbonylverbrückte Form vor. Die Addition des Chlorogold-Bausteins an die RhRh-Doppelbindung von 1a bildet den ersten Syntheseschritt auf dem Wege zu höheren, planaren Cluster-Einheiten [5].

SCHEMA 1

Während elementarer Schwefel bei -20° C unter CO-Eliminierung glatt den Komplex 5 ergibt (Schema 1), beschränkt sich die Reaktion von 1a mit den metallischen Selen- und Tellur-Modifikationen ($-80...0^{\circ}$ C) auf die Addition von nur einem Se- bzw. Te-Atom an die RhRh-Doppelbindung, wobei die Komplexe $X[(\eta^{5}-C_{5}Me_{5})Rh(CO)]_{2}$ (X = Se, 6; X = Te, 7) auftreten; die Frage, ob bei diesen Systemen die für 2, 3 und 4 typische Dreiring-Geometrie erhalten geblieben oder der Rh=X=Rh-Anordnung gewichen ist, wird derzeit röntgenstrukturanalytisch geprüft [6,7]. Der übersichtliche Aufbau der beiden letztgenannten Derivate lässt sich auf andere Haupt- und Nebengruppenmetalle sinngemäss ausdehnen [5].

Vor diesem Hintergrund war die früher erwähnte Addition von Acetylen an die hochreaktive RhRh-Bindung von 1a nicht mehr überraschend [8]: Bereits bei -40° C bildet sich in Minutenfrist der Komplex 8, der nach Ausweis der Infrarotund Kernresonanzspektren (¹H, ¹³C) im kristallinen Zustand sowie bei tiefen Temperaturen auch in Lösung als Isomerengemisch 8A/8B vorliegt und mit Schwefeldioxid quantitative in den Dimetallacyclus 9 überührbar ist. Durch Verwendung der ¹³C-markierten Derivate 8-[H¹³C—¹³CH—¹³CO] und 8-[H¹³C—¹³CH—¹²CO] (Anreicherung 95% [¹³C]₂—C₂H₂ bzw. 92% ¹³CO konnte durch direkte Beobachtung der ¹³C—¹³C-Kopplung erstmals der unmittelbare Beweis für den intramolekularen, reversiblen C—C-Bindungsbruch geführt werden, der die Bindung zwischen der Acyl-Funktion und dem Acetylen-Baustein betrifft. Einer detaillierten NMR-Studie zufolge [5] besitzen die beiden Konstitutionsisomere 8A und 8B bei –60°C (CD₂Cl₂) eine starre Geometrie, die bei Temperaturerhöhung einem raschen intramolekularen CO-Austausch weicht; bei Raumtemperatur sind beide Isomere schliesslich NMR-spektroskopisch nicht mehr unterscheidbar. Auf einen verwandten Isomerisierungsprozess haben kürzlich Knox et al. aus dem beobachteten CO-Austausch in Eisen- und Ruthenium-Komplexen geschlossen [9].

Ersetzt man Acetylen durch sein unsymmetrisch substituiertes Derivat Phenylacetylen, so bildet sich mit **1a** unter vergleichbaren Bedingungen mit hoher Regioselektivität (>95%) die Verbindung **10**, die aufgrund der ¹H- und ¹³C-NMR-Befunde bei Raumtemperatur nicht mehr fluktuiert und deren Konstitution durch eine Acyl—CH-Verknüpfung charakterisiert ist. Hexafluorbutin-2 ergibt mit **1a** ein zu **10** analoges Produkt, für das eine Röntgenstrukturanalyse vorliegt [10].

$$(10, R = C_6 H_5)$$

Der Cobalt-Komplex 1b schliesst sich hinsichtlich der meisten hier beschriebenen Reaktionen seinem Homologen 1a an. So erhält man bei der Umsetzung von 1b mit Acetylen (-20° C, THF) das Additions/Insertionsprodukt 11, das bei 25° C zwar im kristallinen. Zustand haltbar ist, in Lösung aber rasch und reversibel den Acetylen-Baustein abgibt.

Dank. Dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft sowie der Degussa Hanau sei für die grosszügige Unterstützung dieser Arbeit herzlich gedankt.

Literatur

- 1 W.A. Herrmann und L.K. Bell, J. Organometal. Chem., 239 (1982) C4.
- 2 Übersichtsartikel: (a) W.A. Herrmann, Advan. Organometal. Chem., 20 (1982) 159; (b) W.A. Herrmann, Pure Appl. Chem., 54 (1982) 65.
- 3 Vgl. die in Ref. 1 zitierten neueren Beispiele.
- 4 W.A. Herrmann, J. Plank, Ch. Bauer, M.L. Ziegler, E. Guggolz und R. Alt, Z. Anorg. Allg. Chem., 487 (1982) 85.
- 5 W.A. Herrmann, Ch. Bauer, J. Weichmann und R. Serrano, unveröffentliche Ergebnisse.

- 6 Auf analoge Weise ist der Komplex Se $[(\eta^5-C_5Me_5)Co(CO)]_2$ zugänglich, vgl. Ref. 5. Auch einkernige Fragmente reagieren glatt mit Selen und Tellur; so kann die Clusterverbindung μ_3 -Te $[(\eta^5-C_5H_5)Mn(CO)_2]_3$ auf einfache Weise aus $(\eta^5-C_5H_5)Mn(CO)_2$ -THF und elementarem Tellur synthetisiert werden, womit die Verwendung des hochtoxischen Tellurwasserstoffe als Te-Quelle [7] umgangen wird.
- 7 M. Herberhold, D. Reiner und D. Neugebauer, Angew. Chem., im Druck; vgl. Nachr. Chem. Techn. Labor., 30 (1982) 762.
- 8 (a) W.A. Herrmann, Int. Conf. Organometal. Chem., Toronto 1981; (b) W.A. Herrmann, Ch. Bauer,
 G.W. Kriechbaum, H. Kunkely, D. Speth, E. Guggolz und M.L. Ziegler, Chem. Ber., 115 (1982) 878;
 G. K. Kriechbaum, H. Kunkely, D. Speth, E. Guggolz und M.L. Ziegler, Chem. Ber., 115 (1982) 878;
- 9 A.F. Dyke, S.A.R. Knox, P.J. Naish und G.E. Taylor, J. Chem. Soc. Dalton, (1982) 1297.
- 10 R.S. Dickson, G.S. Evans und G.D. Fallon, J. Organometal. Chem., 236 (1982) C49 und die dort zitierte Literatur.